(g o f)-1 (x) = (f-1 o g-1)(x)
contoh: - Tentukan diagram fungsi di bawah ini ada inversnya atau tidak
- Tentukan grafik di bawah ini mempunyai invers/tidak !
CARA MENENTUKAN SUATU GRAFIK MEMPUNYAI INVERS/TIDAK
Tarik sembarang garis sejajar sumbu x, bila memotong grafik hanya di satu titik, maka grafik tersebut mempunyai invers. Bila tidak demikian, maka grafik tersebut tidak mempunyai invers
- Diketahui f: R ® R
f(x) = 2x - 3
Tentukan f-1 (x) !
Jawab:
f one one onto
sehingga f mempunyai invers
misalkan y = image dari x
y = f(x)
y = 2x-3 (yang berarti x = f-1(y))
x = (y+3)/2
f-1(x) = (x+3)/2 - Diketahui f: A ® B
f(x) = (x - 2)/(x - 3)
dengan A = {R - {3}} dan B = {R - {-1}}
(baca: A adalah himpunan bilangan riil kecuali 33)
Tentukan f-1(x)
Jawab:
y = (x - 2)/(x - 3)
y(x - 3) = x - 2
yx - 3y = x - 2
x(y - 1) = 3y - 2
x = (3y - 2)/(y - 1) ® f-1(x) = (3x - 2)/(x - 1)
Sumber:
http://bebas.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Matematika/0376%20Mat%201-4f.htm
0 comments: